cactusinhabitat - logo
Echinopsis cephalomacrostibas
(Werdermann & Backeberg) H. Friedrich & G. D. Rowley 1974
Photograph Echinopsis cephalomacrostibas in habitat

2014, Peru, Arequipa

 

Surveys

2014, Peru, Arequipa, north east of Matarani, A&M 1141 Show on map

Preview photo Echinopsis cephalomacrostibas
01-1300581
Preview photo Echinopsis cephalomacrostibas
02-1300625
Preview photo Echinopsis cephalomacrostibas
03-1300639
Preview photo Echinopsis cephalomacrostibas
04-1300589
Preview photo Echinopsis cephalomacrostibas
05-1300601
Preview photo Echinopsis cephalomacrostibas
06-1300627
Preview photo Echinopsis cephalomacrostibas
07-1300628
Preview photo Echinopsis cephalomacrostibas
08-1300695
Preview photo Echinopsis cephalomacrostibas
09-1300709
Preview photo Echinopsis cephalomacrostibas
10-1300711
Preview photo Echinopsis cephalomacrostibas
11-1300715
Preview photo Echinopsis cephalomacrostibas
12-1300721
Preview photo Echinopsis cephalomacrostibas
13-1300726
Preview photo Echinopsis cephalomacrostibas
14-1300727
Preview photo Echinopsis cephalomacrostibas
15-1300735
Preview photo Echinopsis cephalomacrostibas
16-1300738
Preview photo Echinopsis cephalomacrostibas
17-1300707
Preview photo Echinopsis cephalomacrostibas
18-1300703
Preview photo Echinopsis cephalomacrostibas
19-1300743
Preview photo Echinopsis cephalomacrostibas
20-1300746
Preview photo Echinopsis cephalomacrostibas
21-1300750
Preview photo Echinopsis cephalomacrostibas
22-1300754
Preview photo Echinopsis cephalomacrostibas
23-1300771
Preview photo Echinopsis cephalomacrostibas
24-1300788
Preview photo Echinopsis cephalomacrostibas
25-1300823
Preview photo Echinopsis cephalomacrostibas
26-1300769
Preview photo Echinopsis cephalomacrostibas
27-1300802
Preview photo Echinopsis cephalomacrostibas
28-1300817
Preview photo Echinopsis cephalomacrostibas
29-1300777
Preview photo Echinopsis cephalomacrostibas
30-1300779
Preview photo Echinopsis cephalomacrostibas
31-1300786

 

2014, Peru, Arequipa, north east of Matarani, A&M 1144 Show on map

Preview photo Echinopsis cephalomacrostibas
32-1300871
Preview photo Echinopsis cephalomacrostibas
33-1300884
Preview photo Echinopsis cephalomacrostibas
34-1300881
Preview photo Echinopsis cephalomacrostibas
35-1300882
Preview photo Echinopsis cephalomacrostibas
36-1300911

 

back to top

Synonyms

Cereus cephalomacrostibas*, Haageocereus cephalomacrostibas, Trichocereus cephalomacrostibas, Weberbauerocereus cephalomacrostibas
* Basionym

Distribution

Peru (Arequipa)

Conservation status

(1)   Endangered, EN A2c; B1ab(i,iii,v)

Comments

Note: For the phylogenetic hypothesis adopted for the assimilation of Weberbauerocereus Backeberg in Echinopsis Zuccarini see Anceschi & Magli (2013b, 22-29). 
July 2021

In August 2013, following publication of our 2011/2013 booklet (June 2013), we published an article relating to the discussed monophyly of Echinopsis Zuccarini s.l. in Cactaceae Systematics Initiatives (2013b, 31: 24-27). That article summarized and underlined the position we have taken in the booklet in relation to the phylogenetic hypothesis to be adopted regarding the classification of the genera related to Echinopsis s. l., within the tribe Trichocereeae, or subtribe Trichocereinae (Nyffeler 2002, 317, 319; Lendel et al. 2006, unpubl. data in Nyffeler & Eggli 2010), between the two shown by the results from the molecular analysis carried out by Schlumpberger & Renner (2012: 1335 -1349). According to them, to avoid the polyphyly of Echinopsis s.l. as conceived at the time (Anderson 2001, 2005, 2011; Hunt et al., 2006; Nyffeler & Eggli 2010), there were two possible solutions: 
I) A new division of Echinopsis s. l. in at least 7 old genera (Acanthocalycium, Chamaecereus, Leucostele, Lobivia, Reicheocactus, Soehrensia and Setiechinopsis). This is the option adopted by Schlumpberger, which led to the 48 new combinations presented by him in CSI (28: 29-31). This was a solution devoid of internal coherence, as it did not naturally resolve the internal relationships of the clades Cleistocactus sens. str. and Oreocereus (Schlumpberger & Renner 2012: 1342; Anceschi & Magli 2013b, 31: 25). 
II) The other solution was constituted by the inclusion of 15 genera hitherto never incorporated before in Echinopsis s.l., as indicated by the analysis (Schlumpberger & Renner 2012: 1336, 1341), to make the genus monophyletic in Hennig’s sense. The latter, as we know, is the hypothesis we supported (Anceschi & Magli 2013a, 22-29; 2013b, 31: 24-27). Referring to the aforementioned booklet and to the article in CSI for all the insights related to the matter treated at that time, we now update what is known, with the following notes:

I) Of the 15 genera often cited to be assimilated in Echinopsis s.l., for the constitution of a monophyletic macrogenus Echinopsis, actually just 6 of these are monotypic genera (i.e. composed of only one species): Denmoza, Mila, Rauhocereus, Samaipaticereus, Vatricania, Yungasocereus; and according to Hunt (2003, 15: 3) "The monotypic genus is a contradiction in terms. Logically (or at least etymologically) the term genus implies a class or group of things of a lower order (in botany, species etc.), i.e. a collection of things with common attributes. ". Not to mention that 2 of the genera in question (Oroya and Pygmaeocereus), are composed of only two species. It is therefore evident that the aforementioned transfer to Echinopsis involves in reality far fewer natural taxa than those which would seem to be initially implicated.

II) it is striking that of the 17 naturally-occurring intergeneric hybrids reported by Hunt et al. (2006, text: 321) and taken from Hunt (2015, 33: 16) for the family Cactaceae, as many as 11 concern the alleged genera within the tribe Trichocereeae, or subtribe Trichocereinae, i.e. 1) xCleistocana (Cleistocactus x Matucana), 2) xEchinomoza (Echinopsis x Denmoza), 3) xEspocana (Espostoa x Matucana), 4) xEspostingia (Espostoa x Rahuocereus), 5) xEspostocactus (Espostoa x Cleistocactus), 6) xHaagespostoa (Haageocereus x Espostoa), 7) xMaturoya (Matucana x Oroya), 8) xOreocana (Oreocereus x Matucana), 9) xOreonopsis (Oreocereus x Echinopsis),10) xWeberbostoa (Weberbauerocereus x Espostoa), 11) xYungastocactus (Yungasocereus x Cleistocactus). We would like to remember, assuming that the term genus still has some meaning in biology and classification, that two genera that are such, that by definition cannot cross with each other, and if not, they are not two distinct genera.

III) Regarding the 'judgment' repeatedly expressed by Hunt (2013, xiii; 2018, 39: 5, 11), "This radical option has been espoused by Anceschi & Magli (2013) but seems unlikely to gain many supporters", related to our taxonomic approach to the solution of the Echinopsis classification problem, a judgment which has already been denied by Molinari-Novoa (2015, 13: 18-21) and by Mayta & Molinari-Novoa (2015, 14: 13-20), we wonder: since when being "radical" would compromise the use of a solution in science, if this is the one that best represents the correct interpretation of the theory in use?

IV) As already stated in our synopsis of the genus Parodia Spegazzini s.l. (Anceschi & Magli 2018, 36: 75), recent molecular analysis (Barcenas et al. 2011, 27: 470-489), have clearly highlighted that most of the genera of the Cactaceae as currently understood are not monophyletic in  Hennig's sense (i.e. not sufficiently extended and not supported by a sufficient number of synapomorphies (see Anceschi & Magli 2018, 36: 74-75), or as in the authors’ words “... our least inclusive groupings are significantly larger than currently accepted genera ... However, although many genera are not monophyletic, many of these follow a pattern of a monophyletic core, with one or two outliers suggesting relatively robust groups with 'fuzzy edges' so that in several cases small adjustments to classifications (i.e. moving outside of the genus) may produce monophyletic groups without significant nomenclatural changes. " (ibidem, 488). Regarding this way of operating, we think that the science of classification has reached a crossroads: 
a) correctly apply the available theories to the evidence that science shows us through the techniques and tools currently in use (in this case the principle of monophyly in Hennig's sense (1966), having regard to the opposition that is made of the mentioned principle with the concepts of polyphyly and paraphyly, being the second a new concept proposed by this author (see Anceschi & Magli 2018, 36: 74-75).
b) continue to use the paradigms of collecting to distinguish taxa or, if  preferred, with the contemporary tools at hand, the use of the 'cynical' species concept, which is, summarized in Kitcher's words as follows: "Species [and genera] are those groups of organisms which are recognized as species [or genera] by competent taxonomists. Competent taxonomists, of course, are those who can recognize the true species [or genera]. " (1984 (51) 2: 308). We think that Hunt's solution (2013, xiii), to solve the problem in Echinopsis, to dust off, in his words, the "old favorites" (and now paraphyletics) Echinopsis, Lobivia and Trichocereus, together with the above mentioned genera of Schlumpberger, in addition to adding confusion to confusion, fall under the second hypothesis. (Quoted from Anceschi & Magli 2021, 47-49)

Genus

Echinopsis

Other species

acanthura
acrantha
albispinosa
ancistrophora
angelesiae
aurea
balansae
baumannii
bertramiana
bridgesii
bruchii
buchtienii
bylesiana
calochlora
camarguensis
candelilla
candicans
caulescens
celsiana
cephalomacrostibas
chalaensis
chrysantha
chrysochete
cinnabarina
decumbens
ferox
formosa
guentheri
haematantha
haynei
hempeliana
hennigiana
horstii
huascha
hystrix
kieslingii
korethroides
laniceps
lateritia
leucantha
leucotricha
mamillosa
marsoneri
martinii
maytana
melanostele
micropetala
mirabilis
nothochilensis
nothohyalacantha
obrepanda
oxygona
pachanoi
pamparuizii
parviflora
pasacana
platinospina
pomanensis
pseudomelanostele
pugionacantha
quadratiumbonata
randallii
rauhii
rhodacantha
rojasii
rondoniana
rowleyi
samaipatana
santacruzensis
schickendantzii
sextoniana
smaragdiflora
spiniflora
stilowiana
strausii
strigosa
tacaquirensis
tarijensis
terscheckii
tetracantha
thelegona
thionantha
tominensis
trollii
urbis-regum
volliana
weberbaueri
werdermanniana